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The development of advanced accelerators often requires the modeling of systems that involve a wide range of scales in space and/or time, which can render such modeling extremely challenging. The Adaptive Mesh
Refinement technique can be used to significantly reduce the requirements for computer memory and the number of operations. Its application to the fully self-consistent modeling of beams and plasmas is especially

challenging, due to properties of the Vlasov-Maxwell system of equations. Most recently, we have begun to explore the application of AMR to the modeling of laser plasma wakefield accelerators (LWFA). We present a
summary of the main issues and their mitigations, as well as examples of applications.
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Combining Adaptive Mesh Refinement with Particle-In-Cell techniques: the difficulties Example of electrostatic AMR PIC simulations
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Combining Adaptive Mesh Refinement with Particle-In-Cell techniques: our solutions Examples of electromagnetic MR simulations
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interfaces), and on buffer regions to control spurious effects.
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